

Stoffverteilungsplan Chemie für den Jahrgang 8

Basiskonzepte:

- Stoff-Teilchen (ST)
- Struktur-Eigenschaft (SE)
- Chemische Reaktion (CR)
- Energie (E)

Lehrbuch: Chemie heute, Teilband 1, Schroedel, 2014.

Inhalte/ Unterrichtsvorschlag	Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung			
	Die Schülerinnen und Schüler						
Unterrichtseinheit: Atome	beschreiben den Bau von	 wenden ein einfaches 	• benutzen Atomsymbole.	stellen Bezüge zur			
und der Aufbau von Stoffen	Stoffen mit einem	Atommodell an. (ST)	(ST)	Biologie(Kohlenstoffatom			
(S.86-115)	einfachen Atommodell.	 gehen kritisch mit 	 recherchieren Daten zu 	-Kreislauf, Fotosynthese,			
	(ST)	Modellen um. (ST)	Atommassen in	Atmung) her. (ST)			
S. 88/89: Element und	unterscheiden Elemente	 planen einfache 	<mark>unterschiedlichen</mark>	 wenden Kenntnisse aus 			
Verbindung	und Verbindungen. (ST)	quantitative	<mark>Quellen.</mark>	der Mathematik an. (ST)			
S.90/91: Dalton und die	 unterscheiden Metalle, 	Experimente, führen sie	 beschreiben, 	erkennen die Bedeutung			
Atome	Nichtmetalle, Salze. (ST)	durch und protokollieren	veranschaulichen und	chemischer Reaktionen			
S.94/95: Elementsymbole	beschreiben in	diese (ST)	erklären chemische Sach-	für Natur und Technik.			
und Formeln	Stoffkreisläufen den	führen Experimente zum	<mark>verhalte mit den</mark>	(CR)			
S.96/97: Chemische	Kreislauf der Atome. (ST)	Gesetz der Erhaltung der	passenden Modellen	stellen Bezüge zur			
Grundgesetze	 beschreiben die 	Masse durch. (CR)	<mark>unter Anwendung der</mark>	Biologie			
S.100/101:	proportionale Zuordnung	 deuten chemische 	Fachsprache. (ST)	(Kohlenstoffatom-			
Reaktionsgleichungen –	zwischen der Masse einer	Reaktionen auf der	 diskutieren erhaltene 	kreislauf) her. (CR)			
Reaktionen in der	Stoffportion und der	Atomebene. (CR)	Messwerte (ST)	• bewerten Umweltschutz-			
Formelsprache	Anzahl an Teilchen/	führen qualitative und	beachten in der	maßnahmen unter dem			
S.102/103: Atome	Bausteinen und Atomen.	quantitative einfache	Kommunikation die	Aspekt der			
durchlaufen Stoffkreisläufe	(ST)	Experimente durch und	Trennung von Stoff- und	Atomerhaltung. (CR)			

S.104/105: Wasser ist eine	•	zeigen die Bildung		protokollieren diese. (CR)		Teilchenebene. (CR)	
Verbindung		konstanter	•	beschreiben	•	benutzen die chemische	
S.106/107: Wasserstoff in		Atomanzahlverhältnisse		Abweichungen von		Symbolsprache. (CR)	
Labor und Technik		<mark>in chemischen</mark>		Messergebnissen und	•	übersetzen bewusst	
		Verbindungen auf. (ST)		deuten diese (CR)		Fachsprache in	
	•	beschreiben, dass bei	•	zeigen exemplarisch		Alltagssprache und	
		chemischen Reaktionen		Verknüpfungen zwischen		umgekehrt. (CR)	
		die Atome erhalten		chemischen Reaktionen			
		bleiben und neue		im Alltag und im Labor.			
		Teilchenverbände		(CR)			
		gebildet werden. (CR)					
	•	entwickeln das Gesetz					
		von der Erhaltung der					
		Masse. (CR)					
	•	erstellen					
		Reaktionsgleichungen					
		durch Anwendung der					
		Kenntnisse über die					
		Erhaltung der Atome und					
		die Bildung konstanter					
		Atomanzahlverhältnisse					
		in Verbindungen. (CR)					
	•	beschreiben Beispiele für					
		einfache Atomkreisläufe					
		("Stoffkreisläufe") in					
		Natur und Technik als					
		Systeme chemischer					
		Reaktionen. (CR)					

Inhalte/ Unterrichtsvorschlag	Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewertung
	Die Schülerinnen und Schüler.			
Unterrichtseinheit: Vom Erz zum Metall (S.116-133) S.118/119: Metalle – Partner des Fortschritts S.120/121: Vom Metalloxid zum Metall S.122: Energieumsatz bei Sauerstoffübertragungsreaktionen S.126/127: Vom Eisenerz zum Roheisen S.128/129: Vom Roheisen zum Edelstahl	 beschreiben Sauerstoff- übertragungsreaktionen. (CR) beschreiben Beispiele für einfache Atomkreisläufe ("Stoffkreisläufe") in Natur und Technik als Systeme chemischer Reaktionen. (CR) 	 deuten die Sauerstoffübertra- gungsreaktion als Übertragung von Sauerstoffatomen. (CR) zeigen exemplarisch Verknüpfungen zwischen chemischen Reaktionen im Alltag und im Labor. (CR) 	benutzen Atomsymbole. (ST)	 erkennen die Bedeutung chemischer Reaktionen für Natur und Technik. (CR) zeigen die Bedeutung chemischer Prozesse zur Metallgewinnung auf. (CR)